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Abstract
We consider the curvature of a family of warped products of two pseduo-
Riemannian manifolds (B, gB) and (F, gF ) furnished with metrics of the
form c2gB ⊕ w2gF and, in particular, of the type w2µgB ⊕ w2gF , where
c,w: B → (0,∞) are smooth functions and µ is a real parameter. We obtain
suitable expressions for the Ricci tensor and scalar curvature of such products
that allow us to establish results about the existence of Einstein or constant
scalar curvature structures in these categories. If (B, gB) is Riemannian, the
latter question involves nonlinear elliptic partial differential equations with
concave–convex nonlinearities and singular partial differential equations of the
Lichnerowicz–York-type among others.

PACS numbers: 02.40.−k, 02.30.Jr, 04.50.+h, 11.25.−w
Mathematics Subject Classification: 53C21, 53C25, 53C50

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The main concern of this paper is the curvature of a special family of warped pseudo-metrics
on product manifolds. We introduce a suitable form for the relations among the involved
curvatures in such metrics and apply them to the existence and/or construction of Einstein
and constant scalar curvature metrics in this family.

Let B = (Bm, gB) and F = (Fk, gF ) be two pseudo-Riemannian manifolds of dimensions
m � 1 and k � 0, respectively and also let B × F be the usual product manifold of B and F.
For a given smooth function w ∈ C∞

>0(B) = {v ∈ C∞(B) : v(x) > 0,∀ x ∈ B}, the warped
product B ×w F = ((B ×w F)m+k, g = gB + w2gF ) was defined by Bishop and O’Neill in
[18] in order to study manifolds of negative curvature.
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In this paper, we deal with a particular class of warped products, i.e. when the pseudo-
metric in the base is affected by a conformal change. Precisely, for given smooth functions
c,w ∈ C∞

>0(B) we will call ((B × F)m+k, g = c2gB+w2gF ) as a [c,w]-base conformal warped
product (briefly [c, w]-bcwp), denoted by B ×[c,w] F . We will concentrate our attention on
a special subclass of this structure, namely when there is a relation between the conformal
factor c and the warping function w of the form c = wµ, where µ is a real parameter and we
will call the [ψµ,ψ]-bcwp as a (ψ,µ)-bcwp. Note that we generically called the latter case
as special base conformal warped products, briefly sbcwp in [28].

As we will explain in section 2, metrics of this type play a relevant role in several
topics of differential geometry and theoretical physics (see also [28]). This paper concerns
curvature-related questions of these metrics which are of interest not only in the applications,
but also from the points of view of differential geometry and the type of the involved nonlinear
partial differential equations (PDE), such as those with concave–convex nonlinearities and the
Lichnerowicz–York equations.

The paper is organized in the following way: in section 2, after a brief description
of several fields where pseudo-metrics described as above are applied, we formulate the
curvature problems that we deal within the following sections and give the statements of the
main results. In section 3, we state theorems 2.2 and 2.3 in order to express the Ricci tensor
and scalar curvature of a (ψ,µ)-bcwp and sketch their proofs (see [28, section 3] for detailed
computations). In sections 4 and 5, we establish our main results about the existence of
(ψ,µ)-bcwp’s of constant scalar curvature with compact Riemannian base.

2. Motivations and main results

As we announced in the introduction, we firstly want to mention some of the major fields
of differential geometry and theoretical physics where base conformal warped products are
applied.

(i) In the construction of a large class of non-trivial static anti-de Sitter vacuum spacetimes
• In the Schwarzschild solutions of the Einstein equations (see [9, 17, 40, 57, 67, 72]).
• In the Riemannian Schwarzschild metric, namely (see [9]).
• In the ‘generalized Riemannian anti-de Sitter T2 black hole metrics’ (see [9, section

3.2] for details).
• In the Bañados–Teitelboim–Zanelli (BTZ) and de Sitter (dS) black holes (see [1,

14, 15, 27, 44] for details).
Indeed, all of them can be generated by an approach of the following type: let (F2, gF )

be a pseudo-Riemannian manifold and g be a pseudo-metric on R+ ×R×F2 defined by

g = 1

u2(r)
dr2 ± u2(r) dt2 + r2gF . (2.1)

After the change of variables s = r2, y = 1
2 t , there results ds2 = 4r2dr2 and

dy2 = 1
4 dt2. Then (2.1) is equivalent to

g = 1√
s

[
1

4
√

su2(
√

s)
ds2 ± 4

√
su2(

√
s) dy2

]
+ sgF (2.2)

= (s
1
2 )2(− 1

2 )[(2s
1
4 u(s

1
2 ))2(−1) ds2 ± (2s

1
4 u(s

1
2 ))2dy2] + (s

1
2 )2gF .

Note that roughly speaking, g is a nested application of two (ψ,µ)-bcwp’s. That is, on
R+ × R and taking

ψ1(s) = 2s
1
4 u(s

1
2 ) and µ1 = −1, (2.3)
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the metric inside the brackets in the last member of (2.2) is a (ψ1, µ1)-bcwp, while the
metric g on (R+ × R) × F2 is a (ψ2, µ2)-bcwp with

ψ2(s, y) = s
1
2 and µ2 = − 1

2 . (2.4)

In the last section of [28], through the application of theorems 2.2 and 2.3 below and
several standard computations, we generalized the latter approach to the case of an
Einstein fiber (Fk, gF ) with dimension k � 2.

(ii) In the study of the equivariant isometric embeddings of spacetime slices in Minkowski
spaces (see [37, 38]).

(iii) In the Kaluza–Klein theory (see [58, 76, section 7.6, Particle Physics and Geometry] and
[77] and in the Randall–Sundrum theory [29, 39, 61–63, 69] with µ as a free parameter.
For example, in [45] the following metric is considered

e2A(y)gij dxi dxj + e2B(y) dy2, (2.5)

with the notation {xi}, i = 0, 1, 2, 3 for the coordinates in the four-dimensional
spacetime and x5 = y for the fifth coordinate on an extra dimension. In particular,
Ito takes the ansatz

B = αA, (2.6)

which corresponds exactly to our sbcwp metrics, considering gB = dy2, gF =
gij dxi dxj , ψ(y) = e

B(y)

α = eA(y) and µ = α.
(iv) In string and supergravity theories, for instance, in the Maldacena conjecture about

the duality between compactifications of M/string theory on various anti-de Sitter
spacetimes and various conformal field theories (see [53, 60]) and in warped
compactifications (see [39, 70] and references therein). Besides all of these, there
are also frequent occurrences of this type of metrics in string topics (see [32–36, 51, 59,
69] and also [1, 11, 65] for some reviews about these topics).

(v) In the derivation of effective theories for warped compactification of supergravity
and the Hořava–Witten model (see [48, 49]). For instance, in [49] the ansatz
ds2 = hα ds2(X4) + hβ ds2(Y ) is considered, where X4 is a four-dimensional spacetime
with coordinates xµ, Y is a Calabi–Yau manifold (the so-called internal space) and h
depends on the four-dimensional coordinates xµ, in order to study the dynamics of
the four-dimensional effective theory. We note that in those articles, the structure of
the expressions of the Ricci tensor and scalar curvature of the involved metrics result
particularly useful. We observe that they correspond to very particular cases of the
expressions obtained by us in [28], see also theorems 2.2 and 2.3 and proposition 2.4
stated below.

(vi) In the discussion of Birkhoff-type theorems (generally speaking these are the theorems
in which the gravitational vacuum solutions admit more symmetry than the inserted
metric ansatz, (see [40] p 372 and [16, chapter 3]) for rigorous statements), especially in
equation (6.1) of [64] where Schmidt considers a special form of a bcwp and basically
shows that if a bcwp of this form is Einstein, then it admits one Killing vector more than
the fiber. In order to achieve that, the author considers for a specific value of µ, namely
µ = (1 − k)/2, the following problem:

Does there exist a smooth function ψ ∈ C∞
>0(B) such that the corresponding

(ψ,µ)-bcwp(B2 × Fk,ψ
2µgB + ψ2gF ) is an Einstein manifold? (see also

(Pb-Eins) below.)

(vii) In the study of bi-conformal transformations, bi-conformal vector fields and their
applications (see [31, remark in section 7] and [30, sections 7 and 8]).



13910 F Dobarro and B Ünal

(viii) In the study of the spectrum of the Laplace–Beltrami operator for p-forms. For instance
in equation (1.1) of [10], the author considers the structure that follows: let M be an
n-dimensional compact, Riemannian manifold with boundary, and let y be a boundary-
defining function; she endows the interior M of M with a Riemannian metric ds2 such
that in a small tubular neighborhood of ∂M in M, ds2 takes the form

ds2 = e−2(a+1)t dt2 + e−2bt dθ2
∂M, (2.7)

where t := − log y ∈ (c, +∞) and dθ2
∂M is the Riemannian metric on ∂M (see [10, 54]

and references therein for details).

Notation 2.1 From now on, we will use the Einstein summation convention over repeated
indices and consider only connected manifolds. Furthermore, we will denote the Laplace–
Beltrami operator on a pseudo-Riemannian manifold (N, h) by �N(·), i.e., �N(·) =
∇N i∇N

i(·). Note that �N is elliptic if (N, h) is Riemannian and it is hyperbolic when
(N, h) is Lorentzian. If (N, h) is neither Riemannian nor Lorentzian, then the operator
is ultra-hyperbolic.

Furthermore, we will consider the Hessian of a function v ∈ C∞(N), denoted by Hv
h or Hv

N ,
so that the second covariant differential of v is given by Hv

h = ∇(∇v). Recall that the Hessian
is a symmetric (0, 2) tensor field satisfying

Hv
h (X, Y ) = XYv − (∇XY )v = h(∇X(grad v), Y ), (2.8)

for any smooth vector fields X, Y on N.

For a given pseudo-Riemannian manifold N = (N, h) we will denote its Riemann
curvature tensor, Ricci tensor and scalar curvature by RN, RicN and SN , respectively.

We will denote the set of all lifts of all vector fields of B by L(B). Note that the lift of a
vector field X on B denoted by X̃ is the vector field on B × F given by dπ(X̃) = X where
π : B × F → B is the usual projection map.

In section 3, we will sketch the proofs of the following two theorems related to the Ricci
tensor and the scalar curvature of a generic (ψ,µ)-bcwp.

Theorem 2.2. Let B = (Bm, gB) and F = (Fk, gF ) be two pseudo-Riemannian manifolds
with m � 3 and k � 1, respectively and also let µ ∈ R\{0, 1, µ,µ±} be a real number with

µ := − k

m − 2
and µ± := µ ±

√
µ2 − µ.

Suppose ψ ∈ C∞
>0(B). Then the Ricci curvature tensor of the corresponding (ψ,µ)-bcwp,

denoted by Ric verifies the relation

Ric = RicB + βH 1

ψ
1

αH

Hψ
1

αH

B − β� 1

ψ
1

α�

�Bψ
1

α� gB on L(B) × L(B),

Ric = 0 on L(B) × L(F ), (2.9)

Ric = RicF − 1

ψ2(µ−1)

β�

µ

1

ψ
1

α�

�Bψ
1

α� gF on L(F ) × L(F ),

where

α� = 1

(m − 2)µ + k
, β� = µ

(m − 2)µ + k
,

(2.10)

αH = −[(m − 2)µ + k]

µ[(m − 2)µ + k] + k(µ − 1)
, βH = [(m − 2)µ + k]2

µ[(m − 2)µ + k] + k(µ − 1)
.
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Theorem 2.3. Let B = (Bm, gB) and F = (Fk, gF ) be two pseudo-Riemannian manifolds
of dimensions m � 2 and k � 0, respectively. Suppose that SB and SF denote the scalar
curvatures of B = (Bm, gB) and F = (Fk, gF ), respectively. If µ ∈ R and ψ ∈ C∞

>0(B), then
the scalar curvature S of the corresponding (ψ,µ)-bcwp verifies

(i) If µ �= − k
m−1 , then

−β�Bu + SBu = Su2µα+1 − SF u2(µ−1)α+1, (2.11)

where

α = 2[k + (m − 1)µ]

{[k + (m − 1)µ] + (1 − µ)}k + (m − 2)µ[k + (m − 1)µ]
, (2.12)

β = α2[k + (m − 1)µ] > 0 (2.13)

and ψ = uα > 0.
(ii) If µ = − k

m−1 , then

−k

[
1 +

k

m − 1

] |∇Bψ |2B
ψ2

= ψ−2 k
m−1 [S − SF ψ−2] − SB. (2.14)

From the mathematical and physical points of view, there are several interesting questions
about (ψ,µ)-bcwp’s. In [28], we began the study of existence and/or construction of Einstein
(ψ,µ)-bcwp’s and those of constant scalar curvature. These questions are closely connected
to theorems 2.2 and 2.3.

In [28], by applying theorem 2.2, we give suitable conditions that allow us to study some
particular cases of the problem:

(Pb-Eins.) Given µ ∈ R, does there exist a smooth function ψ ∈ C∞
>0(B) such that

the corresponding (ψ,µ)-bcwp is an Einstein manifold?

In particular, we obtain the following result as an immediate corollary of theorem 2.2.

Proposition 2.4. Let us assume the hypothesis of theorem 2.2. Then the corresponding
(ψ,µ)-bcwp is an Einstein manifold with λ if and only if (F, gF ) is Einstein with ν constant
and the system that follows is verified

λψ2µgB = RicB + βH 1

ψ
1

αH

Hψ
1

αH

B − β� 1

ψ
1

α�

�Bψ
1

α� gB on L(B) × L(B)

(2.15)

λψ2 = ν − 1

ψ2(µ−1)

β�

µ

1

ψ
1

α�

�Bψ
1

α� ,

where the coefficients are given by (2.10).

Compare system (2.15) with the well known one for a classical warped product in
[17, 47, 57]. By studying (2.15), we have obtained the generalization of the construction
exposed in the above motivational examples in (i) and (vi), among other related results. We
suggest the interested reader to consider the results about the problem (Pb-Eins.) stated in
[28].

Now, we focus on the problems which we will deal in section 4. Let B = (Bm, gB) and
F = (Fk, gF ) be pseudo-Riemannian manifolds. There is an extensive number of publications
about the well-known Yamabe problem namely



13912 F Dobarro and B Ünal

(Ya) [12, 47, 48, 66, 73, 77] Does there exist a function ϕ ∈ C∞
>0(B) such that

(Bm, ϕ
4

m−2 gB) has constant scalar curvature?

Analogously, in several articles the following problem has been studied.

(cscwp) [26] Is there a function w ∈ C∞
>0(B) such that the warped product B ×w F

has constant scalar curvature?

In the following we will suppose that B = (Bm, gB) is a Riemannian manifold. Thus,
both problems bring to the study of the existence of positive solutions for nonlinear elliptic
equations on Riemannian manifolds. The involved nonlinearities are powers with Sobolev
critical exponent for the Yamabe problem and sublinear (linear if the dimension k of the fiber
is 3) for the problem of constant scalar curvature of a warped product. In section 4, we deal
with a mixed problem between (Ya) and (cscwp) which is already proposed in [28], namely

(Pb-sc). Given µ ∈ R, does there exist a function ψ ∈ C∞
>0(B) such that the

corresponding (ψ,µ)-bcwp has constant scalar curvature?

Note that when µ = 0, (Pb-sc) corresponds to the problem (cscwp), whereas when the
dimension of the fiber k = 0 and µ = 1, then (Pb-sc) corresponds to (Ya) for the base
manifold. Finally, (Pb-sc) corresponds to (Ya) for the usual product metric with a conformal
factor in C∞

>0(B) when µ = 1. Under the hypothesis of theorem 2.3 (i), the analysis of the
problem (Pb-sc) brings to the study of the existence and multiplicity of solutions u ∈ C∞

>0(B)

of

−β�Bu + SBu = λu2µα+1 − SF u2(µ−1)α+1, (2.16)

where all the components of the equation are like in theorem 2.3 (i), and λ (the conjectured
constant scalar curvature of the corresponding (ψ,µ)-bcwp) is a real parameter. We observe
that an easy argument of separation of variables, like in [23, section 2] and [26], shows that
there exists a positive solution of (2.16) only if the scalar curvature of the fiber SH is constant.
Thus this will be a natural assumption in the study of (Pb-sc).

Furthermore, note that the involved nonlinearities on the right-hand side of (2.16)
dramatically change with the choice of the parameters, an exhaustive analysis of these changes
is the subject matter of [28, section 6].

There are several partial results about semi-linear elliptic equations like (2.16) with
different boundary conditions, see for instance [2, 5, 6, 8, 14, 20, 22, 25, 71, 76] and
references in [28].

In this paper we will state our first results about the problem (Pb-sc) when the base B is a
compact Riemannian manifold of dimension m � 3 and the fiber F has non-positive constant
scalar curvature SF .

For brevity of our study, it will be useful to introduce the following notation:
µsc := µsc(m, k) =− k

m−1 and µpY = µpY(m, k) := − k+1
m−2 (sc as scalar curvature and Y

as Yamabe). Note that µpY < µsc < 0.
We plan to study the case of µ = µsc in a future project, therefore the related results are

not going to be presented here.
We can synthesize our results about (Pb-sc) in the case of non-positive SF as follow.

• The case of scalar flat fiber, i.e. SF = 0.

Theorem 2.5. If µ ∈ (µpY , µsc) ∪ (µsc, +∞) the answer to (Pb-sc) is affirmative.

By assuming some additional restrictions on the scalar curvature of the base SB , we obtain
existence results for the range µ � µpY .
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• The case of fiber with negative constant scalar curvature, i.e. SF < 0. In order to
describe the µ ranges of validity of the results, we will apply the notations introduced in
[28, section 5] (see appendix for a brief introduction of these notations).

Theorem 2.6. If ‘(m, k) ∈ D and µ ∈ (0, 1)’ or ‘(m, k) ∈ CD and µ ∈ (0, 1)∩(µ−, µ+)’
or ‘(m, k) ∈ CD and µ ∈ (0, 1) ∩ C[µ−, µ+]’, then the answer to (Pb-sc) is affirmative.

Remark 2.7. The first two cases in theorem 2.6 will be studied by adapting the ideas
in [5] and the last case by applying the results in [71, p 99]. In the former—theorem
4.15, the involved nonlinearities correspond to the so-called concave–convex whereas
in the latter—theorem 4.16, they are singular as in the Lichnerowicz–York equation
about the constraints for the Einstein equations (see [21, 42, 56], [55, p 542–3] and [71,
chapter 18]). Similar to the case of SF = 0, we obtain existence results for some remaining
µ ranges by assuming some additional restrictions for the scalar curvature of the base SB .

Naturally, the study of (Pb-sc) allows us to obtain partial results of the related question.

Given µ ∈ R and λ ∈ R does there exist a function ψ ∈ C∞
>0(B) such that the

corresponding (ψ,µ)-bcwp has constant scalar curvature λ?

These are stated in the several theorems and propositions in section 4.

3. The curvature relations—sketch of the proofs

The proofs of theorems 2.2 and 2.3 require long and yet standard computations of the Riemann
and Ricci tensors and the scalar curvature of a general base conformal warped product. Here,
we reproduce the results for the Ricci tensor and the scalar curvature, and we also suggest the
reader to see [28, section 3] for the complete computations. From now an ⊗ denotes the usual
tensorial product.

Theorem 3.1. The Ricci tensor of [c, w]-bcwp, denoted by Ric satisfies

(1)

Ric = RicB −
[
(m − 2)

1

c
Hc

B + k
1

w
Hw

B

]
+ 2(m − 2)

1

c2
dc ⊗ dc + k

1

wc
[dc ⊗ dw + dw ⊗ dc]

−
[
(m − 3)

gB(∇Bc,∇Bc)

c2
+

�Bc

c
+ k

gB(∇Bw,∇Bc)

wc

]
gB

on L(B) × L(B),

(2) Ric = 0 onL(B) × L(F),
(3)

Ric = RicF − w2

c2

[
(m − 2)

gB(∇Bw,∇Bc)

wc
+

�Bw

w
+ (k − 1)

gB(∇Bw,∇Bw)

w2

]
gF

on L(F ) × L(F ).

Theorem 3.2. The scalar curvature S of a [c, w]-bcwp is given by

c2S = SB + SF

c2

w2
− 2(m − 1)

�Bc

c
− 2k

�Bw

w
− (m − 4)(m − 1)

gB(∇Bc,∇Bc)

c2

− 2k(m − 2)
gB(∇Bw,∇Bc)

wc
− k(k − 1)

gB(∇Bw,∇Bw)

w2
.
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The following two lemmas (3.3 and 3.7) play a central role in the proof of theorems 2.2
and 2.3. Indeed, it is sufficient to apply them in a suitable mode and make use of theorems 3.1
and 3.2 several times, the reader can find all the details in [28, sections 2 and 4].

Let N = (Nn, h) be a pseudo-Riemannian manifold of dimension n, |∇(·)|2 =
|∇N(·)|2N = h(∇N(·),∇N(·)) and �h = �N .

Lemma 3.3. Let Lh be a differential operator on C∞
>0(N) defined by

Lhv =
k∑

i=1

ri

�hv
ai

vai
, (3.1)

where ri, ai ∈ R and ζ := ∑k
i=1 riai, η := ∑k

i=1 ria
2
i . Then,

(i)

Lhv = (η − ζ )
‖gradhv‖2

h

v2
+ ζ

�hv

v
. (3.2)

(ii) If ζ �= 0 and η �= 0, for α = ζ

η
and β = ζ 2

η
, then we have

Lhv = β
�hv

1
α

v
1
α

. (3.3)

Remark 3.4. We also applied the latter lemma in the study of curvature of multiply warped
products (see [27]).

Corollary 3.5. Let Lh be a differential operator defined by

Lhv = r1
�hv

a1

va1
+ r2

�hv
a2

va2
for v ∈ C∞

>0(N), (3.4)

where r1a1 + r2a2 �= 0 and r1a
2
1 + r2a

2
2 �= 0. Then, by changing the variables v = uα with

0 < u ∈ C∞(N), α = r1a1+r2a2

r1a
2
1 +r2a

2
2

and β = (r1a1+r2a2)
2

r1a
2
1 +r2a

2
2

= α(r1a1 + r2a2) the following result is

obtained:

Lhv = β
�hu

u
. (3.5)

Remark 3.6. By the change of variables as in corollary 3.5, equations of the type

Lhv = r1
�hv

a1

va1
+ r2

�hv
a2

va2
= H(v, x, s) (3.6)

transform into

β�hu = uH(uα, x, s). (3.7)

Lemma 3.7. Let Hh be a differential operator on C∞
>0(N) defined by

Hhv =
∑

ri

Hvai

h

vai
, (3.8)

ζ := ∑
riai and η := ∑

ria
2
i , where the indices extend from 1 to l ∈ N and any ri, ai ∈ R.

Hence,

Hhv = (η − ζ )
1

v2
dv ⊗ dv + ζ

1

v
Hv

h , (3.9)

If furthermore, ζ �= 0 and η �= 0, then

Hhv = β
Hv

1
α

h

v
1
α

, (3.10)

where α = ζ

η
and β = ζ 2

η
.
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4. The problem (Pb-sc)—existence of solutions

Throughout this section, we will assume that B is not only a Riemannian manifold of dimension
m � 3, but also ‘compact’ and connected. We further assume that F is a pseudo-Riemannian
manifold of dimension k � 0 with constant scalar curvature SF � 0. Moreover, we will
assume that µ �= µsc. Hence, we will concentrate our attention on the relations (2.11), (2.12)
and (2.13) by applying theorem 2.3 (i).

Let λ1 denote the principal eigenvalue of the operator

L(·) = −β�B(·) + SB(·), (4.1)

and u1 ∈ C∞
>0(B) be the corresponding positive eigenfunction with ‖u1‖∞ = 1, where β is as

in theorem 2.3.
First of all, we will state some results about uniqueness and non-existence of positive

solutions for equation (2.16) under the latter hypothesis.
About the former, we adapt lemma 3.3 in [5, p 525] to our situation (for a detailed proof

see [5], [19, Method II, p 103] and also [68]).

Lemma 4.1. Let f ∈ C0(R>0) such that t−1f (t) is decreasing. If v and w satisfy

−β�Bv + SBv � f (v), v ∈ C∞
>0(B), (4.2)

and

−β�Bw + SBw � f (w), w ∈ C∞
>0(B), (4.3)

then w � v on B.

Proof. Let θ(t) be a smooth nondecreasing function such that θ(t) ≡ 0 for t � 0 and θ(t) ≡ 1
for t � 1. Thus for all ε > 0,

θε(t) := θ

(
t

ε

)
is smooth, nondecreasing, non-negative and θ(t) ≡ 0 for t � 0 and θ(t) ≡ 1 for t � ε.
Furthermore, γε(t) := ∫ t

0 sθ ′
ε(s) ds satisfies 0 � γε(t) � ε, for any t ∈ R.

On the other hand, since (B, gB) is a compact Riemannian manifold without boundary
and β > 0, like in [5, lemma 3.3, p 526] the following inequality is obtained:∫

B

[−vβ�Bw + wβ�Bv]θε(v − w) dvgB
�

∫
B

[−β�Bv]γε(v − w) dvgB
. (4.4)

Hence, by the above considerations about θε and γε , (4.4) implies that∫
B

[−vβ�Bw + wβ�Bv]θε(v − w) dvgB
� ε

∫
[−β�Bv�0]

[−β�Bv]dvgB
. (4.5)

Now, by applying (4.2) and (4.3) the following results are obtained:

−vβ�Bw + wβ�Bv = vLw − wLv � vf (w) − wf (v) = vw

[
f (w)

w
− f (v)

v

]
. (4.6)

Thus by combining (4.6) and (4.5), as ε → 0+ we led to∫
[v>w]

vw

[
f (w)

w
− f (v)

v

]
dvgB

� 0 (4.7)

and conclude the proof like in [5, lemma 3.3, p 526–7]. But f (v)

v
<

f (w)

w
on [v > w] and

hence meas[v > w] = 0; thus v � w.3 �
3 Meas denotes the usual gB measure on the compact Riemannian manifold (Bm, gB).
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Corollary 4.2. Let f ∈ C0(R>0) such that t−1f (t) is decreasing. Then

−β�Bv + SBv = f (v), v ∈ C∞
>0(B) (4.8)

has at most one solution.

Proof. Assume that v and w are two solutions of (4.8). Then by applying lemma 4.1 firstly
with v and w, and conversely with w and v, the conclusion is proved. �

Remark 4.3. Note that lemma 4.1 and corollary 4.2 allow the function f ∈ C0(R>0) to be
singular at 0.

Related to the non-existence of smooth positive solutions for equation (2.16), we will
state an easy result under the general hypothesis of this section.

Proposition 4.4. If either maxB SB � infu∈R>0 u2µα(λ − SF u−2α) or minB SB �
supu∈R>0

u2µα(λ − SF u−2α), then (2.16) has no solution in C∞
>0(B).

Proof. It is sufficient to apply the maximum principle with some easy adjustments to the
particular involved coefficients. �

• The case of scalar flat fiber, i.e. SF = 0.

In this case, the term containing the nonlinearity u2(µ−1)α+1 becomes non-influent in
(2.16), thus (Pb-sc) equivalently results to the study of existence of solutions for the problem

−β�Bu + SBu = λu2µα+1, u ∈ C∞
>0(B), (4.9)

where λ is a real parameter (i.e., it is the searched constant scalar curvature) and ψ = uα .

Remark 4.5. 4 Let p ∈ R\{1} and (λ0, u0) ∈ (R\{0}) × C∞
>0(B) be a solution of

−β�Bu + SBu = λup, u ∈ C∞
>0(B). (4.10)

Hence, by the difference of homogeneity between both members of (4.9), it is easy to show
that if λ ∈ R satisfies sign(λ) = sign(λ0), then (λ, uλ) is a solution of (4.10), where uλ = tλu0

and tλ = (
λ
λ0

) 1
1−p . Thus by (4.9), we obtain geometrically: if the parameter µ is given in a

way that p := 2µα + 1 �= 1 and B ×[ψµ

0 ,ψ0] F has constant scalar curvature λ0 �= 0, then for
any λ ∈ R verifying sign(λ) = sign(λ0), there results that B ×[ψµ

λ ,ψλ] F is of scalar curvature
λ, where ψλ = tαλ ψ0 and tλ given as above.

Theorem 4.6. (Case: µ = 0) The scalar curvature of a (ψ, 0)-bcwp of base B and fiber F
(i.e., a singly warped product B ×ψ F ) is a constant λ if and only if λ = λ1 and ψ is a positive

multiple of u
2

k+1
1 (i.e., ψ = tu

2
k+1
1 for some t ∈ R>0).

Proof. First of all note that µ = 0 implies α = 2
k+1 . On the other hand, in this case, problem

(4.9) is linear, so it is sufficient to apply the well-known results about the principal eigenvalue
and its associated eigenfunctions of operators like (4.1) in a suitable setting. �

Theorem 4.7. (Case: µsc < µ < 0) The scalar curvature of a (ψ,µ)-bcwp of base B and
fiber F is a constant λ, only if sign(λ) = sign(λ1). Furthermore,

4 Along this paper we consider the sign function defined by sign = χ(0,+∞) −χ(−∞,0), where χA is the characteristic
function of the set A.
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(i) if λ = 0 then there exists ψ ∈ C∞
>0(B) such that B ×[ψµ,ψ] F has constant scalar

curvature 0 if and only if λ1 = 0. Moreover, such ψ’s are the positive multiples of uα
1 , i.e.

tuα
1 , t ∈ R>0.

(ii) if λ > 0 then there exists ψ ∈ C∞
>0(B) such that B×[ψµ,ψ]F has constant scalar curvature

λ if and only if λ1 > 0. In this case, the solution ψ is unique.
(iii) if λ < 0 then there exists ψ ∈ C∞

>0(B) such that B×[ψµ,ψ]F has constant scalar curvature
λ when λ1 < 0 and is close enough to 0.

Proof. The condition µsc < µ < 0 implies that 0 < p := 2µα + 1 < 1, i.e., problem
(4.9) is sublinear. Thus, to prove the theorem one can use variational arguments as in [23]
(alternatively, degree theoretic arguments as in [7] or bifurcation theory as in [26]).

We observe that in order to obtain the positivity of the solutions required in (4.9), one
may apply the maximum principle for the case of λ > 0 and the antimaximum principle for
the case of λ < 0. The uniqueness for λ > 0 is a consequence of corollary 4.2. �

Remark 4.8. In order to consider the next case we introduce the following notation. For a
given p such that 1 < p � pY, let

κp := inf
v∈Hp

∫
B

(
|∇Bv|2 +

SB

β
v2

)
dvgB

, (4.11)

where

Hp :=
{
v ∈ H 1(B) :

∫
B

|v|p+1 dvgB
= 1

}
.

Now, we consider the following two cases.

(1 < p < pY). In this case by adapting [41, theorem 1.3], there exists up ∈ C∞
>0(B) such that

(βκp, up) is a solution of (4.10) and
∫
B

u
p+1
p dvgB

= 1

(p = pY). For this specific and important value, analogously to [41, section 2], we distinguish
three subcases along the study of our problem (4.10), in correspondence with the sign(κpY).

κpY = 0. In this case, there exists upY ∈ C∞
>0(B) such that (0, upY) is a solution of (4.10) and∫

B
u

pY+1
pY dvgB

= 1.

κpY < 0. Here there exists upY ∈ C∞
>0(B) such that (βκpY , upY) is a solution of (4.10) and∫

B
u

pY+1
pY dvgB

= 1.

κpY > 0. This is a more difficult case, let Km be the sharp Euclidean Sobolev constant

Km =
√

4

m(m − 2)ω
2
m
m

, (4.12)

where ωm is the volume of the unit m sphere. Thus, if

κpY <
1

K2
m

, (4.13)

then there exists upY ∈ C∞
>0(B) such that

(
βκpY , upY

)
is a solution of (4.10) and∫

B
u

pY+1
pY dvgB

= 1. Furthermore, the condition

κpY � 1

K2
m

(4.14)
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is sharp by [41], so that this is independent of the underlying manifold and the potential
considered.

The equality case in (4.14) is discussed in [43].

These results allow us to establish the following two theorems.

Theorem 4.9. (Cases: µpY < µ < µsc or 0 < µ). There exists ψ ∈ C∞
>0(B) such that the

scalar curvature of B ×[ψµ,ψ] F is a constant λ if and only if sign(λ) = sign(κp), where
p := 2µα + 1 and κp is given by (4.11). Furthermore, if λ < 0, then the solution ψ is unique.

Proof. The conditions (µpY < µ < µsc or 0 < µ) imply that 1 < p := 2µα + 1 < pY, i.e.
problem (4.9) is superlinear but subcritical with respect to the Sobolev immersion theorem
(see [28, remark 5.5]). By recalling that ψ = uα , it is sufficient to prove that follows.

Let up be defined as in the case of (1 < p < pY) in remark 4.8. If (λ, u) is a solution of
(4.9), then multiplying (4.9) by up and integrating by parts there results

βκp

∫
B

upu dvgB
= λ

∫
B

upup dvgB
. (4.15)

Thus sign(λ) = sign(κp) since β, up and u are all positive.
Conversely, if λ is a real constant such that sign(λ) = sign(κp) �= 0, then by remark 4.5,

(λ, uλ) is a solution of (4.9), where uλ = tλup and tλ = (
λ

βκp

) 1
1−p .

On the other side, if λ = κp = 0, then (0, up) is a solution of (4.9). Since 1 < p, the
uniqueness for λ < 0 is a consequence of corollary 4.2. �

Theorem 4.10. (Cases: µ = µpY). If there exists ψ ∈ C∞
>0(B) such that the scalar curvature

of B ×[ψµpY ,ψ] F is a constant λ, then sign(λ) = sign(κpY). Furthermore, if λ ∈ R verifying
sign(λ) = sign(κpY) and (4.13), then there exists ψ ∈ C∞

>0(B) such that the scalar curvature
of B ×[ψµpY ,ψ] F is λ. Besides, if λ ∈ R is negative, then there exists at most one ψ ∈ C∞

>0(B)

such that the scalar curvature of B ×[ψµpY ,ψ] F is λ.

Proof. The proof is similar to that of theorem 4.9, but follows from the application of the
case of (p = pY) in remark 4.8. Like above, the uniqueness of λ < 0 is a consequence of
corollary 4.2. �

In the next proposition including the supercritical case, we will apply the following result
(see also [71, p 99]).

Lemma 4.11. Let (Nn, gN) be a compact connected Riemannian manifold without boundary
of dimension n � 2 and �gN

be the corresponding Laplace-Beltrami operator. Consider the
equation of the form

−�gN
u = f (·, u), u ∈ C∞

>0(N), (4.16)

where f ∈ C∞(N × R>0). If there exist a0 and a1 ∈ R>0 such that

u < a0 ⇒ f (·, u) > 0 and u > a1 ⇒ f (·, u) < 0, (4.17)

then (4.16) has a solution satisfying a0 � u � a1.

Proposition 4.12. (Cases: −∞ < µ < µsc or 0 < µ). If max SB < 0, then for all λ < 0
there exists ψ ∈ C∞

>0(B) such that the scalar curvature of B ×[ψµ,ψ] F is the constant λ.
Furthermore, the solution ψ is unique.
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Proof. The conditions (−∞ < µ < µsc or 0 < µ) imply that 1 < p := 2µα + 1. On the
other hand, since B is compact, by taking

f (., u) = −SB(·)u + λup = (−SB + λup−1)u,

we obtain that limu−→0+ f (·, u) = 0+ and limu−→+∞ f (·, u) = −∞. Thus (4.17) is verified.
Hence, the proposition is proved by applying lemma 4.11 on (Bm, gB). Note that a0

can take positive values and eventually gets close enough to 0+ due to the condition of
limu−→0+ f (·, u), and consequently the corresponding solution results positive. Again, since
λ < 0 and 1 < p, the uniqueness is a consequence of corollary 4.2. �

Proof of theorem 2.5. This is an immediate consequence of the above results. �
• The case of a fiber with negative constant scalar curvature, i.e. SF < 0.

Here, the (Pb-sc) becomes equivalent to the study of the existence for the problem

−β�Bu + SBu = λup − SF uq, u ∈ C∞
>0(B), (4.18)

where λ is a real parameter (i.e., the searched constant scalar curvature), ψ = uα, p = 2µα+1
and q = 2(µ − 1)α + 1.

Remark 4.13. Let u be a solution of (4.18).

(i) If λ1 � 0, then λ < 0. Indeed, multiplying the equation in (4.18) by u1 and integrating
by parts there results

λ1

∫
B

u1u dvgB
+ SF

∫
B

u1u
q dvgB

= λ

∫
B

u1u
p dvgB

, (4.19)

where u1 and u are positive.
(ii) If λ = 0, then λ1 > 0.

(iii) If µ = 0 (the warped product case), then λ < λ1. These cases have been studied in
[23, 26].

(iv) If µ = 1 (the Yamabe problem for the usual product with the conformal factor in C∞
>0(B)),

there results sign(λ) = sign(λ1 + SF ).

An immediate consequence of remark 4.13 is the following lemma.

Lemma 4.14. Let B and F be given like in theorem 2.3(i). Suppose further that B is a compact
connected Riemannian manifold and F is a pseudo-Riemannian manifold of constant scalar
curvature SF < 0. If λ � 0 and λ1 � 0 (for instance when SB � 0 on B), then there is no
ψ ∈ C∞

>0(B) such that the scalar curvature of B ×[ψµ,ψ] F is λ.

Theorem 4.15 (29, rows 6 and 8 in table 4). Under the hypothesis of theorem 2.3(i), let B
be a compact connected Riemannian manifold and F be a pseudo-Riemannian manifold of
constant scalar curvature SF < 0. Suppose that ‘(m, k) ∈ D and µ ∈ (0, 1)’ or ‘(m, k) ∈ CD

and µ ∈ (0, 1) ∩ C[µ−, µ+]’.

(i) If λ1 � 0, then λ ∈ R is the scalar curvature of a B ×[ψµ,ψ] F if and only if λ < 0.
(ii) If λ1 > 0, then there exists � ∈ R>0 such that λ ∈ R\{�} is the scalar curvature of a

B ×[ψµ,ψ] F if and only if λ < �.

Furthermore, if λ � 0, then there exists at most one ψ ∈ C∞
>0(B) such that B ×[ψµ,ψ] F has

scalar curvature λ.

Proof. The proof of this theorem is the subject matter of section 5. �
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Once again we make use of lemma 4.11 for the next theorem about the singular case and
the following propositions.

Theorem 4.16 (29, row 7, table 4). Under the hypothesis of theorem 2.3(i), let B be a compact
connected Riemannian manifold and F be a pseudo-Riemannian manifold of constant scalar
curvature SF < 0. Suppose that ‘(m, k) ∈ CD and µ ∈ (0, 1)∩ (µ−, µ+)’, then for any λ < 0
there exists ψ ∈ C∞

>0(B) such that the scalar curvature of B ×[ψµ,ψ] F is λ. Furthermore, the
solution ψ is unique.

Proof. First of all note that the conditions ‘(m, k) ∈ CD and µ ∈ (0, 1) ∩ (µ−, µ+)’ imply
that q < 0 and 1 < p , i.e. problem (4.18) is superlinear in p but singular in q.

On the other hand, since B is compact, taking

f (., u) = −SB(·)u + λup − SF uq = [(−SB(·) + λup−1)u1−q − SF ]uq,

results in limu−→0+ f (·, u) = +∞ and limu−→+∞ f (·, u) = −∞. Thus (4.17) is verified.
Thus by an application of lemma 4.11 for (Bm, gB), we conclude the proof for the

existence part.
The uniqueness part just follows from corollary 4.2. �

Remark 4.17. We observe that the arguments applied in the proof of theorem 4.16 can be
adjusted to the case of a compact connected Riemannian manifold B with 0 � q < 1 < p,

λ < 0 and SF < 0, so that some of the situations included in theorem 4.15. However, both
argumentations are compatible but different.

Proof of theorem 2.6. This is an immediate consequence of the above results. �

The approach in the next propositions is similar to proposition 4.12 and theorem 4.16.

Proposition 4.18 (29, row 10, table 4). Let 1 < µ < +∞. If max SB < 0, then for all λ < 0
there exists ψ ∈ C∞

>0(B) such that the scalar curvature of B ×[ψµ,ψ] F is the constant λ.

Proof. The condition 1 < µ < +∞ implies that 1 < q < p.
On the other hand, since B is compact, taking

f (., u) = −SB(·)u + λup − SF uq = [−SB(·) + (λup−q − SF )uq−1]u,

results in limu−→0+ f (·, u) = 0+ and limu−→+∞ f (·, u) = −∞. Thus (4.17) is satisfied.
Thus an elementary application of lemma 4.11 for (Bm, gB) proves the proposition. �

Proposition 4.19 (29, rows 2, 4 and 3 in table 4). Let either ‘(m, k) ∈ D and µ ∈ (µsc, 0)’ or
‘(m, k) ∈ CD and µ ∈ (µsc, 0) ∩ C[µ−, µ+]’ or ‘(m, k) ∈ CD and µ ∈ (µsc, 0) ∩ (µ−, µ+)’.
If min SB > 0, then for all λ � 0 there exists a smooth function ψ ∈ C∞

>0(B) such that the
scalar curvature of B ×[ψµ,ψ] F is the constant λ.

Proof. If either ‘(m, k) ∈ D and µ ∈ (µsc, 0)’ or ‘(m, k) ∈ CD and µ ∈ (µsc, 0)∩C[µ−, µ+]’,
then 0 < q < p < 1.

On the other hand, since B is compact, taking

f (., u) = −SB(·)u + λup − SF uq = [−SB(·)u1−q + λup−q − SF ]uq,

results in limu−→0+ f (·, u) = 0+ and limu−→+∞ f (·, u) = −∞. Thus (4.17) is verified and
again we can apply lemma 4.11 for (Bm, gB).

If ‘(m, k) ∈ CD and µ ∈ (µsc, 0) ∩ (µ−, µ+)’, then q < 0 < p < 1. Considering the
limits as above, limu−→0+ f (·, u) = +∞ and limu−→+∞ f (·, u) = −∞. So, an application of
lemma 4.11 concludes the proof. �
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Remark 4.20. Note that in theorems 4.15 and 4.16 we do not assume hypothesis related to
the sign of SB(·), unlike in propositions 4.12, 4.18 and 4.19.

Proposition 4.21 (29, rows 5 and 9 in table 4). Let (m, k) ∈ CD.

(i) If either ‘µ ∈ (− k
m−1 , 0

) ∩ {µ−, µ+} and min SB > 0’ or ‘µ ∈ (0, 1) ∩ {µ−, µ+}’, then
for all λ < 0 there exists a smooth function ψ ∈ C∞

>0(B) such that the scalar curvature
of B ×[ψµ,ψ] F is the constant λ. In the second case, ψ is also unique .

(ii) If either ‘µ ∈ (− k
m−1 , 0

) ∩ {µ−, µ+}’ or ‘µ ∈ (0, 1) ∩ {µ−, µ+}’ and furthermore
λ1 > 0, then there exists a smooth function ψ ∈ C∞

>0(B) such that the scalar curvature
of B ×[ψµ,ψ] F is 0.

Proof. In both cases q = 0, so by considering

f (., u) = −SB(·)u + λup − SF ,

the proof of (1) follows as in the latter propositions, while that of (2) is a consequence of the
linear theory and the maximum principle. �

Remark 4.22. Finally, we observe a particular result about the cases studied in [26]. If µ = 0,
then p = 1 and q = 1 − 2α = k−3

k+1 . When the dimension of the fiber is k = 2, the exponent
q = − 1

3 . So, writing the involved equation as

− 8
3�Bu = f (., u) = −SB(·)u + λu − SF u− 1

3

and by applying lemma 4.11 as above, we obtain that if λ < min SB , then there exists a smooth
function ψ ∈ C∞

>0(B) such that the scalar curvature of B ×ψ F is the constant λ. Furthermore,
by corollary 4.2 such ψ is unique (see [26, 24, 23]).

5. Proof of theorem 4.15

The subject matter of this section is the proof of theorem 4.15, so we naturally assume its
hypothesis. Most of the time, we need to specify the dependence of λ of (4.18), we will
do that by writing (4.18)λ. Furthermore, we will denote the right-hand side of (4.18)λ by
fλ(t) := λtp − SF tq .

The conditions either ‘(m, k) ∈ D and µ ∈ (0, 1)’ or ‘(m, k) ∈ CD and µ ∈
(0, 1) ∩ C[µ−, µ+]’ imply that 0 < q < 1 < p. But the type of nonlinearity on the right-hand
side of (4.18)λ changes with the signλ, i.e. it is purely concave for λ < 0 and concave–convex
for λ > 0.

The uniqueness for λ � 0 is again a consequence of corollary 4.2. In order to prove the
existence of a solution for (4.18)λ with signλ �= 0, we adapt the approach of sub and upper
solutions in [5].

Thus, the proof of theorem 4.15 will be an immediate consequence of the results that
follows.

Lemma 5.1. (4.18)0 has a solution if and only if λ1 > 0.

Proof. This situation is included in the results of the second case of theorem 4.7 by replacing
−SF with λ (see [23, proposition 3.1]).

�

Lemma 5.2. Let us assume that {λ : (4.18)λ has a solution} is non-empty and define

� = sup{λ : (4.18)λ has a solution}. (5.1)
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(i) If λ1 � 0, then � � 0.
(ii) If λ1 > 0, then there exists λ > 0 finite such that � � λ.

Proof.

(i) It is sufficient to observe remark 4.13 (i).
(ii) Like in [5], let λ > 0 such that

λ1t < λtp − SF tq, ∀ t ∈ R, t > 0. (5.2)

Thus, if (λ, u) is a solution of (4.18)λ, then

λ

∫
B

u1u
p − SF

∫
B

u1u
q =

∫
B

λ1u1u < λ

∫
B

u1u
p − SF

∫
B

u1u
q,

so λ < λ. �

Lemma 5.3. (see figure 1). Let

� = sup{λ : (4.18)λ has a solution}. (5.3)

(i) Let E ∈ R>0. There exist 0 < λ0 = λ0(E) and 0 < M = M(E, λ0) such that
∀ λ : 0 < λ � λ0, so we have

0 < E
fλ(EM)

EM
< 1. (5.4)

(ii) If λ1 > 0, then {λ > 0 : (4.18)λ has a solution} �= ∅. As a consequence of that, � is
finite.

(iii) If λ1 > 0, then for all 0 < λ < � there exists a solution of the problem (4.18)λ.

Proof.

(i) For any 0 < λ < λ0

0 < gλ(r) := E
fλ(Er)

Er
= Erq−1(λEp−1rp−q − SF Eq−1)

< Erq−1(λ0E
p−1rp−q − SF Eq−1).

It is easy to see that

r0 =
(

SF

λ0

q − 1

p − 1

) 1
p−q 1

E

is a minimum point for gλ0 and

gλ0(r0) = E

(
SF

λ0

q − 1

p − 1

) q−1
p−q

SF

[
q − 1

p − 1
− 1

]
→ 0+, as λ0 → 0+.

Hence there exist 0 < λ0 = λ0(E) and 0 < M = M(E, λ0) such that (5.4) is verified.
(ii) Since λ1 > 0, by the maximum principle, there exists a solution e ∈ C∞

>0(B) of

LB(e) = −β�Be + SBe = 1. (5.5)

Then, applying item (i) above with E = ‖e‖∞ there exists 0 < λ0 = λ0(‖e‖∞) and
0 < M = M(‖e‖∞, λ0) such that ∀ λ with 0 < λ � λ0 we have that

LB(Me) = M � fλ(Me), (5.6)

hence Me is a supersolution of (4.18)λ.
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On the other hand, since ǔ1 := inf u1 > 0, for all λ > 0,

ε−1fλ(εǔ1) = εq−1[λεp−q ǔ
p

1 − SF ǔ
q

1] → +∞, as ε → 0+. (5.7)

Furthermore, note that fλ is nondecreasing when λ > 0. Hence for any 0 < λ there exists
a small enough 0 < ε verifying

LB(εu1) = ελ1u1 � ελ1‖u1‖∞ � fλ(εǔ1) � fλ(εu1), (5.8)

thus εu1 is a subsolution of (4.18)λ.
Then for any 0 < λ < λ0, (taking eventually 0 < ε smaller if necessary), we have that
the above-constructed couple sub-super solution satisfies

εu1 < Me. (5.9)

Now, by applying the monotone iteration scheme, we have that {λ > 0 :
(4.18)λhas a solution} �= ∅. Furthermore, by lemma 5.2 (ii) there results � are finite.

(iii) The proof of this item is completely analogous to lemma 3.2 in [5]. We will rewrite this
to be self-contained.

Given λ < �, let uν be a solution of (4.18)ν with λ < ν < �. Then uν is a
supersolution of (4.18)λ and for small enough 0 < ε, the subsolution εu1 of (4.18)λ
verifies εu1 < uν , then as above (4.18)λ has a solution. �

Lemma 5.4. For any λ < 0, there exists γλ > 0 such that ‖u‖∞ � γλ for any solution u of
(4.18)λ. Furthermore, if SB is non-negative, then positive zero of fλ can be chosen as γλ.

Proof. Define ŠB := min SB (recall that B is compact). There are two different situations,
namely,

• 0 � ŠB : since there exists x1 ∈ B such that u(x1) = ‖u‖∞ and 0 � −β�Bu(x1) =
−SB(x1)‖u‖∞ + λ‖u‖p

∞ − SF ‖u‖q
∞, there results ‖u‖∞ � γλ, where γλ is the strictly

positive zero of fλ.
• ŠB < 0: we consider f̃λ(t) := λtp −SF tq − ŠB t . Now, our problem (4.18)λ is equivalent

to

−β�Bu + (SB − ŠB)u = f̃λ(u), u ∈ C∞
>0(B).

But here the potential of (SB − ŠB) is non-negative and the function f̃λ has the same
behavior of fλ with a positive zero γ̃λ on the right-hand side of the positive zero γλ of fλ.
Thus, repeating the argument for the case of ŠB � 0, we proved ‖u‖∞ � γ̃λ. �

Lemma 5.5. (see figure 2). Let λ1 > 0. Then for all λ < 0 there exists a solution of (4.18)λ.

Proof. We will apply again the monotone iteration scheme. Define ŠB := min SB (note that
B is compact).

• 0 � ŠB . Clearly, the strictly positive zero γλ of fλ is a supersolution of

−β�Bu + (SB + ν)u = fλ(u) + νu, (5.10)

for all ν ∈ R.
On the other hand, for 0 < ε = ε(λ) small enough,

LB(εu1) = ελ1u1 � fλ(εu1). (5.11)

Then εu1 is a subsolution of (5.10) for all ν ∈ R.
By taking ε possibly smaller, we also have

0 < εu1 < γλ. (5.12)
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We note that for large enough values of ν ∈ R>0, the nonlinearity on the right-hand
side of (5.10), namely fλ(t) + νt , is an increasing function on [0, γλ].

Thus applying the monotone iteration scheme we obtain a strictly positive solution of
(5.10), and hence a solution of (4.18)λ (see [3, 4, 52]).

• ŠB < 0: In this case, like in lemma 5.4 we consider f̃λ(t) := λtp − SF tq − ŠB t . Then,
problem (4.18)λ is equivalent to

−β�Bu + (SB − ŠB)u = f̃λ(u), u ∈ C∞
>0(B), (5.13)

where the potential is non-negative and the function f̃λ has a similar behavior to fλ with
a positive zero γ̃λ on the right-hand side of the positive zero γλ of fλ.
Here, it is clear that γ̃λ is a positive supersolution of

−β�Bu + (SB − ŠB + ν)u = f̃λ(u) + νu, (5.14)

for all ν ∈ R. Hence, we complete the proof similar to the case of ŠB � 0. �

Lemma 5.6. Let λ1 � 0, λ < 0, ŠB := min SB and also γλ be a positive zero of fλ and γ̃λ be
a positive zero of f̃λ := fλ − ŠBidR�0 . Then there exists a solution u of (4.18)λ. Furthermore,
any solution of (4.18)λ satisfies γλ � ‖u‖∞ � γ̃λ.

Proof. First of all we observe that if SB ≡ 0 (so λ1 = 0), then u ≡ γλ is the searched solution
of (4.18)λ.

Now, we assume that SB �≡ 0. Since λ1 � 0, there results ŠB < 0. In this case, one can
note that 0 < γλ < γ̃λ.

On the other hand, problem (4.18)λ is equivalent to

−β�Bu + (SB − ŠB)u = f̃λ(u), u ∈ C∞
>0(B). (5.15)

By the second part of the proof of lemma 5.4, if u is a solution of (4.18)λ (or equivalently
(5.15)), then ‖u‖∞ � γ̃λ. Besides, since∫

B

u1(fλ ◦ u) = λ1

∫
B

u1u,

u, u1 > 0 and λ1 � 0 results γλ � ‖u‖∞.
From this point, the proof of the existence of solutions for (5.15) follows the lines of the

second part of lemma 5.5. �

6. Conclusions and future directions

Now, we would like to summarize the content of the paper and to propose our future plans on
this topic.

We inform the reader that several computations and proofs, along with other
complementary results mentioned in this paper and references can be obtained in [28]. We
have chosen this procedure to avoid the involved long computations.

In brief, we introduced and studied curvature properties of a particular family of warped
products of two pseudo-Riemannian manifolds which we called as a base conformal warped
product. Roughly speaking the metric of such a product is a mixture of a conformal metric on
the base and a warped metric. We concentrated on a special subclass of this structure, where
there is a specific relation between the conformal factor c and the warping function w, namely
c = wµ, with µ being a real parameter.

As we mentioned in section 1 and the first part of section 2, these kinds of metrics and
considerations about their curvatures are very frequent in different physical areas, for instance
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theory of general relativity, extra-dimension theories (Kaluza–Klein, Randall–Sundrum),
string and super-gravity theories, also in global analysis for example in the study of the
spectrum of Laplace–Beltrami operators on p-forms, etc.

More precisely, in theorems 3.1 and 3.2, we obtained the classical relations among
the different involved Ricci tensors (respectively, scalar curvatures) for metrics of the form
c2gB ⊕w2gF . Then the study of particular families of either scalar or tensorial nonlinear partial
differential operators on pseudo-Riemannian manifolds (see lemmas 3.3 and 3.7) allowed us
to find reduced expressions of the Ricci tensor and scalar curvature for metrics as above with
c = wµ, where µ is a real parameter (see theorems 2.2 and 2.3). The operated reductions
can be considered as generalizations of those used by Yamabe in [77] in order to obtain the
transformation law of the scalar curvature under a conformal change in the metric and those
used in [26] with the aim to obtain a suitable relation among the involved scalar curvatures in a
singly warped product (see also [50] for other particular application and our study on multiply
warped products in [27]).

In sections 4 and 5, under the hypothesis that (B, gB) be a ‘compact’ and connected
Riemannian manifold of dimension m � 3 and (F, gF ) be a pseudo-Riemannian manifold of
dimension k � 0 with constant scalar curvature SF , we dealt with the problem (Pb-sc). This
question leads us to analyze the existence and uniqueness of solutions for nonlinear elliptic
partial differential equations with several kinds of nonlinearities. The type of nonlinearity
changes with the value of the real parameter µ and the sign of SF . In this paper, we
concentrated our attention to the cases of constant scalar curvature SF � 0 and accordingly
the central results are theorems 2.4 and 2.5. Although our results are partial so that there
are more cases to study in forthcoming works, we also obtained other complementary results
under more restricted hypothesis about the sign of the scalar curvature of the base.

Throughout our study, we meet several types of partial differential equations. Among
them, most important ones are those with concave–convex nonlinearities and the so-called
Lichnerowicz–York equation. About the former, we deal with the existence of solutions and
leave the question of multiplicity of solutions to a forthcoming study.

We observe that the previous problems as well as the study of the Einstein equation on
base conformal warped products, (ψ,µ)-bcwp’s and their generalizations to multi-fiber cases,
give rise to a reach family of interesting problems in differential geometry and physics (see
for instance, the several recent works of Argurio, Gauntlett, Katanaev, Kodama, Maldacena,
Schmidt, Strominger, Uzawa, Wesson among many others) and in nonlinear analysis (see the
different works of Ambrosetti, Aubin, Choquet-Bruat, Escobar, Hebey, Isenberg, Malchiodi,
Pollack, Schoen, Yau among others).

Appendix

Let us assume the hypothesis of theorem 2.3 (i), the dimensions of the base m � 2 and of
the fiber k � 1. In order to describe the classification of the type of nonlinearities involved
in (2.11), we will introduce some notation (for a complete study of these nonlinearities see
[28, section 5]). The example in figure 3 will help the reader to clarify the notation.

Note that the denominator in (2.12) is

η := (m − 1)(m − 2)µ2 + 2(m − 2)kµ + (k + 1)k (A.1)

and verifies η > 0 for all µ ∈ R. Thus α in (2.12) is positive if and only if µ > − k
m−1 and by

the hypothesis µ �= − k
m−1 in theorem 2.3 (i), results α �= 0.
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Figure 1. The nonlinearity fλ in lemma 5.3 i.e. 0 < q < 1 < p, SF < 0, λ1 > 0, λ > 0.

Figure 2. The nonlinearity in lemma 5.5 i.e. 0 < q < 1 < p, SF < 0, λ1 > 0, λ < 0.

We now introduce the following notation:

p = p(m, k, µ) = 2µα + 1 and

q = q(m, k, µ) = 2(µ − 1)α + 1 = p − 2α,
(A.2)

where α is defined by (2.12).
Thus, for all m, k,µ given as above, p is positive. Indeed, by (A.1), p > 0 if and only if

� > 0, where

� := �(m, k, µ)

:= 4µ[k + (m − 1)µ] + (m − 1)(m − 2)µ2 + 2(m − 2)kµ + (k + 1)k

= (m − 1)(m + 2)µ2 + 2mkµ + (k + 1)k.

But discr(�) � −4km2 � −16 and m > 1, so � > 0.
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Figure 3. Example: (m, k) = (7, 4) ∈ CD.

Unlike p, q changes the sign depending on m and k. Furthermore, it is important to
determine the position of p and q with respect to 1 as a function of m and k. In order to do
that, we define

D := {(m, k) ∈ N�2 × N�1 : discr(�(m, k, ·)) < 0}, (A.3)

where N�l := {j ∈ N : j � l} and

� := �(m, k, µ)

:= 4(µ − 1)[k + (m − 1)µ] + (m − 1)(m − 2)µ2 + 2(m − 2)kµ + (k + 1)k

= (m − 1)(m + 2)µ2 + 2(mk − 2(m − 1))µ + (k − 3)k.

Note that by (A.1), q > 0 if and only if � > 0. Furthermore, q = 0 if and only if � = 0. But
here discr(�(m, k, . . .)) changes its sign as a function of m and k.

We adopt here the notation in [28, table 4] below, namely CD = (N�2 × N�1)\D if
D ⊆ N�2 × N�1 and CI = R\I if I ⊆ R. Thus, if (m, k) ∈ CD, let µ− and µ+ two roots
(eventually one, see [28, remark 5.3]) of q, µ− � µ+. Besides, if discr(�(m, k, ·)) > 0, then
µ− < 0, whereas µ+ can take any sign.
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